
Large Scale
Longitudinal
Experiments:
Estimation and
Inference
October 30, 2024

Apoorva Lal
Paper (joint with Alex Fischer, MatthewWardrop): arXiv:2410.09952



Why study panel data in recommender systems?

We often have longitudinal data for users/devices/... : {Zi,t}N,Ti=1,t=1

In typical experiments, we flatten the time dimension and compute a difference in
means in the post-treatment window (optionally adjusting for average outcome in
pre-treatment window)
This leads us to miss out on treatment-effect dynamics, which are intrinsic to
recommender systems

1 Compliance is often not immediate: typically experimental treatments are rolled out but
compliance isn’t measured; analyzed as intent to treat (ITT)

2 Timing of compliance is informative: activity bias := estimates for early compliers might
not be externally valid

3 Dynamic effects are important: novelty bias := estimates of early time periods might not
be externally valid

this project: propose scalable panel data estimators that help identify these
temporal and cohort-level granularity is informative and important - don’t flatten
them with a T-test
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X includes intercept and binary treatment
indicatorWi

Suppose X takes on values in X with finite
cardinality C
Then, we compute sufficient statistics by
strata, run ỹ/ñ ∼ X̃β + ε: C observations ABlaze is built around this: Wong et al(2021)
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strata, run ỹ/ñ ∼ X̃β + ε: C observations

ABlaze is built around this: Wong et al(2021)

V̂(β) =

Bread︷ ︸︸ ︷
(X̃⊤diag(ñ)X̃)−1
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Building Blocks

Base untreated potential outcome : Y0
it = αi + γt + ϵit

Treated potential outcome under static, constant
effects: Y1
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Treated potential outcome under unit heterogeneity:
Y1
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∑
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Treated potential outcome under time heterogeneity:
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it = Y0

it +
∑

k≥0 τik1{t− Ti = k}
Observed outcome:

Yit = Y0
it(1−Wit) + Y1

itWit

Under random assignment or parallel trends, we can
form estimates of Y0

it and construct estimates of
(reasonable averages of) τit

When assignment time is
endogenous, need generalized
propensity score Arkhangelsky et
al (2024)
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Easier to satisfy in experiments since E [Y0 | W = 1] = E [Y0 | W = 0] under random
assignment
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Regressions we’d like to run

Ȳi,t>T0 = α+ τWi + εi Diff in Means
Ȳi,t>T0 = α+ τWi + βȲi,t<T0 + εi CUPED

Yit = αi + γt + τWit + εit Static TWFE

Yit = αi + γt +
T∑

k=0,k̸=−1

τkZkit + εit Dynamic TWFE (Event Study)

Yit = α+ γt +
T∑

k≥0

τkZkit + εit Dynamic DiM

Yit = αi + γt +
C∑

c=2

T∑
k=0,k̸=−1

1{Gi = c}τkcZkit + εit Disagg Dynamic TWFE (Staggered Event Study)

Zit := 1{argmin{t : Wit = 1} − t = k} (treatment indicator× event-time)

N× T ≈ 50m× 95 = 4.75b obs
Wi, αi, γt jointly identify a single observation - cannot compress
Unit intercepts αi: millions of distinct values
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Trick 1: Partialling out - the within estimator

We don’t inherently care about αi, γt; they are nuisance parameters
Partial them out (i.e. kick them out of X′X)

Frisch-Waugh-Lovell Theorem / Gram-Schmidt Process

specialized methods for high dimensional categorical covariates: Method of alternating
projections / Kaczmarz method (implemented in areg/reghdfe/
fixest/felm/pyfixest/⒠ⓨ┰)

Residualise RHSWit −Wi,· −W·,t =: Ẅit

Obviates the need to adjust for time-invariant member characteristics (all absorbed
in FEs)

Yit = τẄit + εit

This regression can be compressed. However, we don’t have an equivalent
representation for dynamic regressions (event studies, disaggregated event studies),
etc.
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Trick 2: Mundlak (1978) + Wooldridge (2021) Trick

Yit = αi + γt + τWit + εit Static TWFE
Yit = δ + τWit + ϕW̄i,· + ψW̄·,t + εit Mundlak-ed Static TWFE

Yit = αi + γt +

T∑
k=0,k̸=−1

τkZkit + εit Dynamic TWFE

Yit = δ + ψDi +

T∑
k=1

ϕt1{t = k}+
T∑

k=1

τkDi1{t = k}+ εit

Yit = αi + γt +

C∑
c=2

T∑
k=0,k̸=−1

1{Gi = c}τkcZkit + εit Disagg Dynamic TWFE

Yit = δ +
C∑

c=1

ψc1{Di = k}︸ ︷︷ ︸
Cohort Dummies

+
T∑

k=1

ϕt1{t = k}︸ ︷︷ ︸
Time Dummies

+
C∑

c=1

T∑
k=1

τkc1{Di = c}1{t = k}︸ ︷︷ ︸
Cohort× Time interactions

+εit
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Design Matrix Dimensions

(1) Standard M (2) Mundlak M̃

Static Yit = αi + γt + τWit + εit NT Yit = α+ τWit + ψWi,·
+ϕW·,t + εit

2+(C+1)

Dyn Yit = αi + γt
+
∑

k̸=−1 τkZkit + εit
NT Yit = α+ ψDi +

∑T
k=1 ϕt1t=k

+
∑T

k=1 τkDi1t=k + εit
2T

Dyn+Stagg
Yit = αi + γt

+
∑C

c=1

∑
k̸=−1 τkc1Gi=cZkit

+εit

NT

Yit = α+
∑C

c=1 ψc1Di=c
+
∑T

k=1 ϕt1t=k
+
∑C

c=1

∑T
k=1 τkc1Di=c1t=k

+εit

CT

N units, T time periods
M, M̃: number of required rows in design matrix
C unique adoption cohorts (including control)
2 + (C+ 1) = 4 obs in standard A/B test
Cluster-robust inference with cluster-bootstrap











Numerical Experiments
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Estimation Accuracy for Different forms of Temporal Heterogeneity
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Runtime Comparisons

1000× {14, 28, 42, 140, 280, 420} units, {14, 28, 42} days.
Observations Units Periods duckreg pyfixest pyfixest compressed statsmodels

14K 1K 14 0.03 0.18 0.17 2.75
28K 1K 28 0.03 0.19 0.18 6.27
42K 1K 42 0.04 0.20 0.21 9.43
140K 10K 14 0.05 0.22 0.26 x
280K 10K 28 0.06 0.26 0.36 x
420K 10K 42 0.04 0.31 0.47 x
1M 100K 14 0.07 0.64 1.27 x
3M 100K 28 0.21 1.00 2.28 x
4M 100K 42 0.24 1.41 3.43 x
14M 1M 14 1.03 4.88 22.12 x
28M 1M 28 3.41 8.07 62.07 x
42M 1M 42 10.92 13.60 117.63 x
140M 10M 14 19.70 123.88 x x

Mundlak ✓ - ✓ -
Compression ✓ - ✓ -
Out-of-Memory ✓ - - -



Extension: imbalanced panels, descriptive analysis - AKM
Regressions

Yit︸︷︷︸
Stickiness

∼ αi︸︷︷︸
Member FE

+ ψJ(i,t)︸ ︷︷ ︸
Title-FE

+ x′itβ︸︷︷︸
Covariates

+εit

Classic tool in Labour Economics (Abowd et al 1999)
αi member FE: unit i’s baseline completion metric
J(i, t): i watched j at time t
ψj title FE: title j’s completion metric
Requires connected user-title graph - plausible
Admits to variance decomposition

V [Yit − X′
itβ] = V [αi]︸ ︷︷ ︸

Member effects

+V
[
ψj(i,t)

]︸ ︷︷ ︸
Title Effects

+V
[
Cov

[
αi, ψj(i,t)

]]︸ ︷︷ ︸
Sorting

+V [εit]

Naive estimator has problems, fixes use Jackknife (Kline et al 2020). Variance
components suggest different catalogue / recommendation strategies.
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Extensions, Conclusion

Methods + Software for compressed, out-of-memory computation of commonly
used least-squares panel data estimators

duckreg : powered by duckDB - out of memory
pyfixest: general purpose in-memory regression package, compression in Polars

Applicable to both scalable estimation of event studies in experiments (focus of this
talk), and difference-in-differences methods in observational settings
Applies to any saturated regression, balanced-or-unbalanced panel data, or any
high-dimensional categorical covariate
Extensions / Links

Extension to GLMs: Lumley (2018) - estimate MLE on subsample, perform one-step
Fisher-scoring update
Sketching methods - randomized linear algebra tricks to approx X′X ‘well’: Mahoney
(2013), Pilanci et al (2018), Dobriban et al (2023)

Other ideas?
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