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N Why study panel data in recommender systems?

m We often have longitudinal data for users/devices/... : {Z; t}, 1t=1

m In typical experiments, we flatten the time dimension and compute a difference in
means in the post-treatment window (optionally adjusting for average outcome in
pre-treatment window)

m This leads us to miss out on treatment-effect dynamics, which are intrinsic to
recommender systems

Compliance is often not immediate: typically experimental treatments are rolled out but
compliance isn’t measured; analyzed as intent to treat (ITT)

Timing of compliance is informative: activity bias := estimates for early compliers might
not be externally valid

Dynamic effects are important: novelty bias := estimates of early time periods might not
be externally valid

m this project: propose scalable panel data estimators that help identify these

m temporal and cohort-level granularity is informative and important - don’t flatten
them with a T-test
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Outcome

Raw outcomes for 30 units from four DGPs
Cross-sectional ATE=0 for all four

1: Constant Effect, 1 adoption cohort

2: Heterogeneous Across Units, 1 adoption cohort
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Compressing Least Squares
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cardinality C
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strata, runy/n ~ X3 + e: C observations
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m Xincludes intercept and binary treatment
indicator W;

m Suppose X takes on values in X’ with finite
cardinality C

m Then, we compute sufficient statistics by
strata, runy/n ~ X3 + e: C observations

Table 1: Example dataset and its compressed versions.

(a) (b) (c) (d)

M y My n M vy a M ¥ ¥ i
A1 A1 2 A 133 3 4 6 3
A1 A 21 B 35 2 B 7 2 2
A 2 B 3 1 C 501 C o521
B 3 B 41

B 4 [

C 5

(a) Uncompressed data. (b) f-weights: (y,M)-compressed records.

(c) Groups: (M)-compressed records. (d) Sufficient Statistics: (M)-compressed records.

ABlaze is built around this: Wong et al(2021)
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m Xincludes intercept and binary treatment B3 B4
indicator W; B SR
C 5
m Suppose X takes on values in X’ with finite
cardinality C (a) Uncompressed data. (b) f-weights: (y, M)-compressed records

(c¢) Groups: (M)-compressed records. (d) Sufficient Statistics: (M)-compressed records.

m Then, we compute sufficient statistics by

trat y/n~X :Cob ti
strata, runy/n A + e Cobservations ABlaze is built around this: Wong et al(2021)
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Building Blocks

Base untreated potential outcome: Yf} =i+ vt + €t

Treated potential outcome under static, constant
effects: Yi = Yo+ 7

Treated potential outcome under unit heterogeneity:
Yi=Ya+Ti

Treated potential outcome under time heterogeneity:

Yllt = Y?t"‘ Zkzo Tl{t— T; = k}

Treated potential outcome under time heterogeneity:

Yi= Yo+ Y so il {t— Ti=k}
Observed outcome:

Yie = V(1 — W) + YW

Under random assignment or parallel trends, we can
form estimates of Y3 and construct estimates of
(reasonable averages of) 7i;

Treatment Assighment
0 5 10 15 20 25

When assignment time is
endogenous, need generalized
propensity score Arkhangelsky et
al (2024)



N Parallel Trends
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N Parallel Trends

E[Yi|W = 1]
-V =1]
EMM|W=1]

E[Yo|W = 1]
E[Y,|W=0]
E[Yo|W = 0]

Easier to satisfy in experiments since E[Y; | W= 1] =E[Y, | W= 0] under random

assignment
9 ®
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Regressions we’d like to run

YitsTo = a+T7W;+¢; Diff in Means
Yiesto = a+ 7Wi+ B8Y ety +6i CUPED
Yit = aj+ vt + Wit + €t Static TWFE
T
Yi=ai+y+ >, mZktei Dynamic TWFE (Event Study)
k=0, ks —1
T
Yi=a+yi+ > i+ ei Dynamic DiM
k>0

Yit =i+t + XC: XT: 1{G; = c}TkCfot + ¢t Disagg Dynamic TWFE (Staggered Event Study)
=2 k=0,k#—1
B Z;:= 1{argmin{t: W; = 1} — t = k} (treatment indicator x event-time)
B Nx T=50mx 95 =4.75b obs
m W, «aj,v¢jointly identify a single observation - cannot compress
m Unit intercepts a;: millions of distinct values
@
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Trick 1: Partialling out - the within estimator

m We don’t inherently care about «;, v, they are nuisance parameters
m Partial them out (i.e. kick them out of X’X)

m Frisch-Waugh-Lovell Theorem / Gram-Schmidt Process

m specialized methods for high dimensional categorical covariates: Method of alternating
projections / Kaczmarz method (implemented in areg/reghdfe/
fixest/felm/pyfixest/...)

m Residualise RHS W — W;. — W. s =: W
m Obviates the need to adjust for time-invariant member characteristics (all absorbed
in FEs)

Yie = Wit + cit

This regression can be compressed. However, we don’t have an equivalent
representation for dynamic regressions (event studies, disaggregated event studies),
etc.
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N Trick 2: Mundlak (1978) + Wooldridge (2021) Trick

Yie = ai+ vt + 7Wit +eir Static TWFE
Yi=0+7Wi+ oW, +pW. ¢ +ei Mundlak-ed Static TWFE
T
Ye=ai+y+ >, mZi+ten Dynamic TWFE
k=0,k#—1

T T
Yie=0+yDi+ Y ¢d{t=k}+ > nDil{t=k}+ex

k=1 k=1

Yi=oai+y+Y. Y. 1{G = clrcZi+en Disagg Dynamic TWFE

c=2 k=0,k£—1

Yie =06+ Z¢cn{D, =k} +Z¢t]1{t_ k}+ZZTkC]I{D, = c}1{t=k} +er

c=1 k=1

Cohort Dummies Time Dummies Cohort x Time interactions



Design Matrix Dimensions

(1) Standard M (2) Mundlak M
i = ok, o Yie=a+7Wi+ ¢y W,.
Static Yie = ai+yt+7Wit +cit NT Wi+ =i 2+(C+1)
Dyn Yit = aj+ 7t NT | Y=o yDit S dtlek oT
+ Pk Wit it +3 chDilt:k+5/'f
Yit = i+t Yif+:£r+ chzl Velo=c
Dyn+Stagg +28 S Thelo=eZi | NT k=1 Ptle=k cT

+eit

(o] T
+ Zc:l > k=1 TkelD=cli=k
teit

N units, T time periods
M, M: number of required rows in design matrix
C unique adoption cohorts (including control)
2+ (C+1) =4 obsin standard A/B test
Cluster-robust inference with cluster-bootstrap




Event Study figures for the four scenarios
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Event Study estimates under staggered adoption

—=— True Effect (Cohort 1)
Estimated Effect (Cohort 1)
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Numerical Experiments



Estimation Accuracy for Different forms of Temporal Heterogeneity
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RMSE By (Unit | Time) Heterogeneity and Misspecification
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Runtime Comparisons

1000 x {14, 28,42, 140, 280, 420} units, {14, 28, 42} days.

Observations Units Periods | duckreg pyfixest pyfixest compressed statsmodels
14K 1K 14 0.03 0.18 0.17 2.75
28K 1K 28 0.03 0.19 0.18 6.27
42K 1K 42 0.04 0.20 0.21 9.43
140K 10K 14 0.05 0.22 0.26 X
280K 10K 28 0.06 0.26 0.36 X
420K 10K 42 0.04 0.31 0.47 X
™ 100K 14 0.07 0.64 1.27 X
3M 100K 28 0.21 1.00 2.28 X
4M 100K 42 0.24 1.41 3.43 X
14M ™ 14 1.03 4.88 22.12 X
28M ™ 28 3.41 8.07 62.07 X
42M ™ 42 10.92 13.60 117.63 X
140M 10M 14 19.70 123.88 X X
Mundlak v - v -
Compression v - v -
Out-of-Memory v - - -
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Yie -~ Qi + w + ﬁt,j/ +eit
Stickiness Member FE  Title-FE  Covariates
Classic tool in Labour Economics (Abowd et al 1999)
«aj member FE: unit /'s baseline completion metric
J(i, t): iwatched jat time t
1; title FE: title fs completion metric
Requires connected user-title graph - plausible
Admits to variance decomposition

\% [Y,iL — X?tﬂ] = Y [Ozi] +V [1/)]-(,-71‘)] +V [COV [Oz,'7 ¢j(i,t)“ +V [Eit]

Member effects  Title Effects Sorting

Naive estimator has problems, fixes use Jackknife (Kline et al 2020). Variance
components suggest different catalogue / recommendation strategies.
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Extensions, Conclusion

m Methods + Software for compressed, out-of-memory computation of commonly
used least-squares panel data estimators
m duckreg: powered by duckDB - out of memory
m pyfixest: general purpose in-memory regression package, compression in Polars

m Applicable to both scalable estimation of event studies in experiments (focus of this
talk), and difference-in-differences methods in observational settings

m Applies to any saturated regression, balanced-or-unbalanced panel data, or any
high-dimensional categorical covariate
m Extensions / Links

m Extension to GLMs: Lumley (2018) - estimate MLE on subsample, perform one-step
Fisher-scoring update

m Sketching methods - randomized linear algebra tricks to approx X' X ‘well’: Mahoney
(2013), Pilanci et al (2018), Dobriban et al (2023)

m Other ideas?



