Large Scale Longitudinal **Experiments: Estimation and** Inference

October 30, 2024

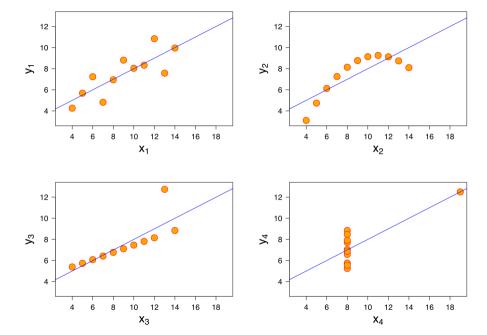
- In typical experiments, we flatten the time dimension and compute a difference in means in the post-treatment window (optionally adjusting for average outcome in pre-treatment window)
- This leads us to miss out on treatment-effect dynamics, which are intrinsic to recommender systems

- In typical experiments, we flatten the time dimension and compute a difference in means in the post-treatment window (optionally adjusting for average outcome in pre-treatment window)
- This leads us to miss out on treatment-effect dynamics, which are intrinsic to recommender systems
 - Compliance is often not immediate: typically experimental treatments are rolled out but compliance isn't measured; analyzed as *intent to treat* (ITT)

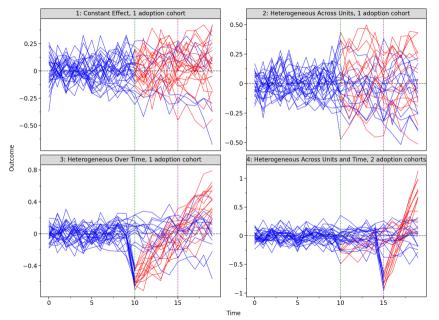
- In typical experiments, we flatten the time dimension and compute a difference in means in the post-treatment window (optionally adjusting for average outcome in pre-treatment window)
- This leads us to miss out on treatment-effect dynamics, which are intrinsic to recommender systems
 - Compliance is often not immediate: typically experimental treatments are rolled out but compliance isn't measured; analyzed as *intent to treat* (ITT)
 - 2 Timing of compliance is informative: **activity bias :=** estimates for early compliers might not be externally valid

- In typical experiments, we flatten the time dimension and compute a difference in means in the post-treatment window (optionally adjusting for average outcome in pre-treatment window)
- This leads us to miss out on treatment-effect dynamics, which are intrinsic to recommender systems
 - Compliance is often not immediate: typically experimental treatments are rolled out but compliance isn't measured; analyzed as *intent to treat* (ITT)
 - 2 Timing of compliance is informative: **activity bias :=** estimates for early compliers might not be externally valid
 - 3 Dynamic effects are important: **novelty bias :=** estimates of early time periods might not be externally valid

- In typical experiments, we flatten the time dimension and compute a difference in means in the post-treatment window (optionally adjusting for average outcome in pre-treatment window)
- This leads us to miss out on treatment-effect dynamics, which are intrinsic to recommender systems
 - Compliance is often not immediate: typically experimental treatments are rolled out but compliance isn't measured; analyzed as *intent to treat* (ITT)
 - 2 Timing of compliance is informative: **activity bias :=** estimates for early compliers might not be externally valid
 - 3 Dynamic effects are important: **novelty bias :=** estimates of early time periods might not be externally valid
- this project: propose scalable panel data estimators that help identify these
- temporal and cohort-level granularity is informative and important don't flatten them with a T-test



Raw outcomes for 30 units from four DGPs Cross-sectional ATE=0 for all four



$$\widehat{\boldsymbol{\beta}} = \left(\underbrace{\mathbf{X}^{\top}}_{P \times N} \underbrace{\mathbf{X}}_{N \times P} \right)^{-1} \underbrace{\mathbf{X}^{\top}}_{P \times N} \underbrace{\mathbf{y}}_{N \times 1}$$
$$\mathbb{V} \left[\widehat{\boldsymbol{\beta}} \right] = \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \Omega \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1}$$

$$\widehat{\boldsymbol{\beta}} = \left(\underbrace{\mathbf{X}}_{P \times N}^{\top} \underbrace{\mathbf{X}}_{N \times P} \right)^{-1} \underbrace{\mathbf{X}}_{P \times N}^{\top} \underbrace{\mathbf{y}}_{N \times 1}$$
$$\mathbb{V} \left[\widehat{\boldsymbol{\beta}} \right] = \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \Omega \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1}$$

- X includes intercept and binary treatment indicator *W_i*
- Suppose X takes on values in X with finite cardinality C
- Then, we compute sufficient statistics by strata, run ỹ/ñ ~ Xβ + ε: C observations

$$\widehat{\boldsymbol{\beta}} = \left(\underbrace{\mathbf{X}^{\top}}_{P \times N} \underbrace{\mathbf{X}}_{N \times P} \right)^{-1} \underbrace{\mathbf{X}^{\top}}_{P \times N} \underbrace{\mathbf{y}}_{N \times 1}$$
$$\mathbb{V} \left[\widehat{\boldsymbol{\beta}} \right] = \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \Omega \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1}$$

- X includes intercept and binary treatment indicator *W_i*
- Suppose X takes on values in X with finite cardinality C
- Then, we compute sufficient statistics by strata, run ỹ/ñ ~ Xβ + ε: C observations

Table 1: Example dataset and its compressed versions.

(a)			(b)		(c)		(d)				
\mathbf{M}	у	Ŵ	ý	ń	$\bar{\mathbf{M}}$	$\bar{\mathbf{y}}$	ñ	$\tilde{\mathbf{M}}$	$\tilde{\mathbf{y}}'$	$\tilde{\mathbf{y}}''$	ñ
А	1	А	1	2	А	1.33	3	А	4	6	3
Α	1	А	2	1	В	3.5	2	В	$\overline{7}$	25	2
Α	2	В	3	1	\mathbf{C}	5	1	\mathbf{C}	5	25	1
в	3	В	4	1							
в	4	С	5	1							
\mathbf{C}	5										

(a) Uncompressed data. (b) f-weights: (y, M)-compressed records.

(c) Groups: (M)-compressed records. (d) Sufficient Statistics: (M)-compressed records.

ABlaze is built around this: Wong et al(2021)

$$\widehat{\boldsymbol{\beta}} = \left(\underbrace{\mathbf{X}^{\top}}_{P \times N} \underbrace{\mathbf{X}}_{N \times P} \right)^{-1} \underbrace{\mathbf{X}^{\top}}_{P \times N} \underbrace{\mathbf{y}}_{N \times 1}$$
$$\mathbb{V} \left[\widehat{\boldsymbol{\beta}} \right] = \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{X}^{\top} \Omega \mathbf{X} \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1}$$

- X includes intercept and binary treatment indicator *W_i*
- Suppose X takes on values in X with finite cardinality C
- Then, we compute sufficient statistics by strata, run ỹ/ñ ~ Xβ + ε: C observations

Table 1: Example dataset and its compressed versions.

(a	a)			(b)			(c)			(6	I)	
\mathbf{M}	у	Ň	ſ	ý	ń	$\bar{\mathbf{M}}$	$\bar{\mathbf{y}}$	$\bar{\mathbf{n}}$	$\tilde{\mathbf{M}}$	$\tilde{\mathbf{y}}'$	$\tilde{\mathbf{y}}''$	$\tilde{\mathbf{n}}$
А	1	А		1	2	А	1.33	3	А	4	6	3
Α	1	А		2	1	в	3.5	2	В	7	25	2
Α	2	Е		3	1	\mathbf{C}	5	1	\mathbf{C}	5	25	1
в	3	Е		4	1							
в	4	C		5	1							
\mathbf{C}	5	_										

(a) Uncompressed data. (b) f-weights: (y, M)-compressed records.

(c) Groups: (M)-compressed records. (d) Sufficient Statistics: (M)-compressed records.

ABlaze is built around this: Wong et al(2021)

$$\widehat{\mathbb{V}}(\beta) = \overbrace{(\widetilde{\mathbf{X}}^{\top} \operatorname{diag}(\widetilde{\mathbf{n}}) \widetilde{\mathbf{X}})^{-1}}^{\operatorname{Bread}} \overbrace{\widetilde{\mathbf{X}}^{\top} \operatorname{diag}(\sum_{j} \underbrace{(\widetilde{\mathbf{y}}_{j}^{2} \widetilde{\mathbf{n}}_{j} - 2 \widetilde{\mathbf{y}}_{j} \widetilde{\mathbf{y}}_{j}' + \widetilde{\mathbf{y}}_{j}')}_{\operatorname{RSS in} j}) \widetilde{\mathbf{X}}}^{\operatorname{Bread}} (\widetilde{\mathbf{X}}^{\top} \operatorname{diag}(\widetilde{\mathbf{n}}) \widetilde{\mathbf{X}})^{-1}}$$

- Base untreated potential outcome : $Y_{it}^0 = \alpha_i + \gamma_t + \epsilon_{it}$
- Treated potential outcome under static, constant effects: $Y_{it}^{1} = Y_{it}^{0} + \tau$

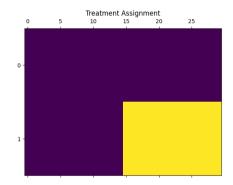
- Base untreated potential outcome : $Y_{it}^0 = \alpha_i + \gamma_t + \epsilon_{it}$
- Treated potential outcome under static, constant effects: $Y_{it}^{1} = Y_{it}^{0} + \tau$
- Treated potential outcome under unit heterogeneity: $Y_{it}^{1} = Y_{it}^{0} + \tau_{i}$
- Treated potential outcome under time heterogeneity: $Y_{it}^{1} = Y_{it}^{0} + \sum_{k \ge 0} \tau_{k} 1\{t - T_{i} = k\}$

- Base untreated potential outcome : $Y_{it}^0 = \alpha_i + \gamma_t + \epsilon_{it}$
- Treated potential outcome under static, constant effects: $Y_{it}^{1} = Y_{it}^{0} + \tau$
- Treated potential outcome under unit heterogeneity: $Y_{it}^{1} = Y_{it}^{0} + \tau_{i}$
- Treated potential outcome under time heterogeneity: $Y_{it}^{1} = Y_{it}^{0} + \sum_{k \ge 0} \tau_{k} \mathbb{1}\{t - T_{i} = k\}$
- Treated potential outcome under time heterogeneity: $Y_{it}^{1} = Y_{it}^{0} + \sum_{k \ge 0} \tau_{ik} 1\{t - T_{i} = k\}$

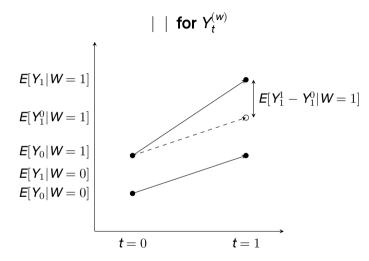
- Base untreated potential outcome : $Y_{it}^0 = \alpha_i + \gamma_t + \epsilon_{it}$
- Treated potential outcome under static, constant effects: $Y_{it}^{1} = Y_{it}^{0} + \tau$
- Treated potential outcome under unit heterogeneity: $Y_{it}^{l} = Y_{it}^{0} + \tau_{i}$
- Treated potential outcome under time heterogeneity: $Y_{it}^{1} = Y_{it}^{0} + \sum_{k \ge 0} \tau_{k} 1\{t - T_{i} = k\}$
- Treated potential outcome under time heterogeneity: $Y_{it}^{1} = Y_{it}^{0} + \sum_{k \ge 0} \tau_{ik} 1\{t - T_{i} = k\}$
- Observed outcome:

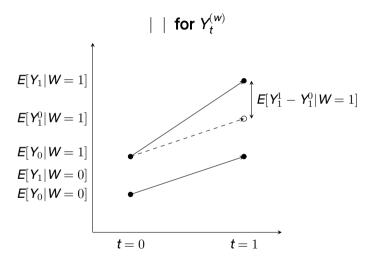
$$\mathbf{Y}_{it} = \mathbf{Y}_{it}^{0}(1 - \mathbf{W}_{it}) + \mathbf{Y}_{it}^{1}\mathbf{W}_{it}$$

 Under random assignment or parallel trends, we can form estimates of Y⁰_{it} and construct estimates of (reasonable averages of) τ_{it}



When assignment time is endogenous, need generalized propensity score Arkhangelsky et al (2024)





Easier to satisfy in experiments since $\mathbb{E}[Y_0 | W = 1] = \mathbb{E}[Y_0 | W = 0]$ under random assignment

$$\begin{split} \bar{Y}_{i,t>\tau_0} &= \alpha + \tau W_i + \varepsilon_i \\ \bar{Y}_{i,t>\tau_0} &= \alpha + \tau W_i + \beta \bar{Y}_{i,t<\tau_0} + \varepsilon_i \end{split}$$

N

Diff in Means CUPED

Z_{*it*} := $\mathbb{1}$ {argmin{ $t: W_{it} = 1$ } - t = k} (treatment indicator × event-time)

 $\overline{Y}_{i t > \tau_0} = \alpha + \tau W_i + \varepsilon_i$ **Diff in Means** $\bar{Y}_{i,t>\tau_{0}} = \alpha + \tau W_{i} + \beta \bar{Y}_{i,t<\tau_{0}} + \varepsilon_{i}$ CUPED $Y_{it} = \alpha_i + \gamma_t + \tau W_{it} + \varepsilon_{it}$ Static TWFE $\mathbf{Y}_{it} = \frac{\boldsymbol{\alpha}_i}{\boldsymbol{\gamma}_i} + \boldsymbol{\gamma}_t + \sum_{it}^{T} \boldsymbol{\tau}_k \mathbf{Z}_{it}^k + \varepsilon_{it}$ Dynamic TWFE (Event Study) k=0 $k\neq -1$ $Y_{it} = \alpha + \gamma_t + \sum_{k>0}^T \tau_k Z_{it}^k + \varepsilon_{it}$ **Dynamic DiM** $Y_{it} = \alpha_i + \gamma_t + \sum_{i=1}^{C} \sum_{j=1}^{T} \mathbb{1}\{G_i = c\} \tau_{kc} Z_{it}^k + \varepsilon_{it} \text{ Disagg Dynamic TWFE (Staggered Event Study)}$ $c=2 k=0, k\neq -1$

Z_{it} := $\mathbb{1}$ {argmin{ $t: W_{it} = 1$ } - t = k} (treatment indicator × event-time)

 $\overline{Y}_{i t > \tau_0} = \alpha + \tau W_i + \varepsilon_i$ **Diff in Means** $\bar{Y}_{i,t>\tau_{0}} = \alpha + \tau W_{i} + \beta \bar{Y}_{i,t<\tau_{0}} + \varepsilon_{i}$ CUPED $Y_{it} = \alpha_i + \gamma_t + \tau W_{it} + \varepsilon_{it}$ Static TWFE $Y_{it} = \frac{\alpha_i}{\gamma_t} + \gamma_t + \sum_{i=1}^{T} \tau_k Z_{it}^k + \varepsilon_{it}$ Dynamic TWFE (Event Study) k=0 $k\neq -1$ $Y_{it} = \alpha + \gamma_t + \sum_{k>0}^T \tau_k Z_{it}^k + \varepsilon_{it}$ **Dynamic DiM** $Y_{it} = \alpha_i + \gamma_t + \sum_{i=1}^{C} \sum_{j=1}^{T} \mathbb{1}\{G_i = c\} \tau_{kc} Z_{it}^k + \varepsilon_{it} \text{ Disagg Dynamic TWFE (Staggered Event Study)}\}$ $c=2 k=0, k\neq -1$

 $Z_{it} := \mathbb{1}\{ \operatorname{argmin}\{t : W_{it} = 1\} - t = k \} \text{ (treatment indicator } \times \text{ event-time)} \\ N \times T \approx 50m \times 95 = 4.75b \text{ obs}$

 $\overline{Y}_{i t > \tau_0} = \alpha + \tau W_i + \varepsilon_i$ **Diff in Means** $\bar{Y}_{i,t>\tau_{0}} = \alpha + \tau W_{i} + \beta \bar{Y}_{i,t<\tau_{0}} + \varepsilon_{i}$ CUPED $Y_{it} = \alpha_i + \gamma_t + \tau W_{it} + \varepsilon_{it}$ Static TWFF $Y_{it} = \frac{\alpha_i}{\gamma_t} + \gamma_t + \sum_{it}^{T} \tau_k Z_{it}^k + \varepsilon_{it}$ Dynamic TWFE (Event Study) k=0 $k\neq -1$ $Y_{it} = \alpha + \gamma_t + \sum_{k>0}^{T} \tau_k Z_{it}^k + \varepsilon_{it}$ **Dynamic DiM** $Y_{it} = \frac{\alpha_i}{\gamma_t} + \gamma_t + \sum_{i=1}^{C} \sum_{j=1}^{T} \mathbb{1}\{G_i = c\} \tau_{kc} Z_{it}^k + \varepsilon_{it} \text{ Disagg Dynamic TWFE (Staggered Event Study)}\}$ $c=2 k=0, k\neq -1$

- $\blacksquare Z_{it} := \mathbb{1}\{ \operatorname{argmin}\{t : W_{it} = 1\} t = k \} \text{ (treatment indicator } \times \text{ event-time)}$
- $N \times T \approx 50 m \times 95 = 4.75 b obs$
- **W**_{*i*}, α_i , γ_t jointly identify a single observation cannot compress
- Unit intercepts α_i: millions of distinct values

Trick 1: Partialling out - the within estimator

• We don't inherently care about α_i, γ_t ; they are nuisance parameters

- Partial them out (i.e. kick them out of X'X)
 - Frisch-Waugh-Lovell Theorem / Gram-Schmidt Process

Trick 1: Partialling out - the within estimator

- We don't inherently care about α_i , γ_t ; they are nuisance parameters
- Partial them out (i.e. kick them out of X'X)
 - Frisch-Waugh-Lovell Theorem / Gram-Schmidt Process
 - specialized methods for high dimensional categorical covariates: Method of alternating projections / Kaczmarz method (implemented in areg/reghdfe/ fixest/felm/pyfixest/...)
- Residualise RHS $W_{it} \overline{W}_{i,\cdot} \overline{W}_{\cdot,t} =: \ddot{W}_{it}$

Trick 1: Partialling out - the within estimator

- We don't inherently care about α_i , γ_t ; they are nuisance parameters
- Partial them out (i.e. kick them out of X'X)
 - Frisch-Waugh-Lovell Theorem / Gram-Schmidt Process
 - specialized methods for high dimensional categorical covariates: Method of alternating projections / Kaczmarz method (implemented in areg/reghdfe/ fixest/felm/pyfixest/...)
- Residualise RHS $W_{it} \overline{W}_{i,\cdot} \overline{W}_{\cdot,t} =: \ddot{W}_{it}$
- Obviates the need to adjust for time-invariant member characteristics (all absorbed in FEs)

$$\mathbf{Y}_{it} = \tau \ddot{\mathbf{W}}_{it} + \varepsilon_{it}$$

This regression *can* be compressed. However, we don't have an equivalent representation for dynamic regressions (event studies, disaggregated event studies), etc.

Trick 2: Mundlak (1978) + Wooldridge (2021) Trick

$$Y_{it} = \alpha_i + \gamma_t + \tau W_{it} + \varepsilon_{it}$$
$$Y_{it} = \delta + \tau W_{it} + \phi \overline{W}_{i,\cdot} + \psi \overline{W}_{\cdot,t} + \varepsilon_{it}$$

N

Static TWFE Mundlak-ed Static TWFE

Trick 2: Mundlak (1978) + Wooldridge (2021) Trick

$$Y_{it} = \alpha_i + \gamma_t + \tau W_{it} + \varepsilon_{it}$$
$$Y_{it} = \delta + \tau W_{it} + \phi \overline{W}_{i,\cdot} + \psi \overline{W}_{\cdot,t} + \varepsilon_{it}$$

N

Static TWFE Mundlak-ed Static TWFE

$$Y_{it} = \alpha_i + \gamma_t + \sum_{k=0, k \neq -1}^{T} \tau_k Z_{it}^k + \varepsilon_{it}$$

$$Y_{it} = \delta + \psi D_i + \sum_{k=1}^{T} \phi_t \mathbb{1}\{t = k\} + \sum_{k=1}^{T} \tau_k D_i \mathbb{1}\{t = k\} + \varepsilon_{it}$$
Dynamic TWFE

Trick 2: Mundlak (1978) + Wooldridge (2021) Trick

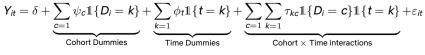
$$Y_{it} = \alpha_i + \gamma_t + \tau W_{it} + \varepsilon_{it}$$
$$Y_{it} = \delta + \tau W_{it} + \phi \overline{W}_{i,\cdot} + \psi \overline{W}_{\cdot,t} + \varepsilon_{it}$$

Static TWFE Mundlak-ed Static TWFE

$$Y_{it} = \alpha_i + \gamma_t + \sum_{k=0, k \neq -1}^{T} \tau_k Z_{it}^k + \varepsilon_{it}$$

$$Y_{it} = \delta + \psi D_i + \sum_{k=1}^{T} \phi_t \mathbb{1}\{t = k\} + \sum_{k=1}^{T} \tau_k D_i \mathbb{1}\{t = k\} + \varepsilon_{it}$$
Dynamic TWFE

$$Y_{it} = \alpha_i + \gamma_t + \sum_{c=2}^{C} \sum_{k=0, k \neq -1}^{T} \mathbb{1} \{ G_i = c \} \tau_{kc} Z_{it}^k + \varepsilon_{it}$$
 Disagg Dynamic TWFE

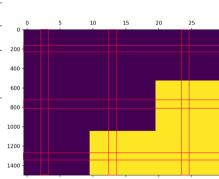


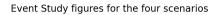
Design Matrix Dimensions

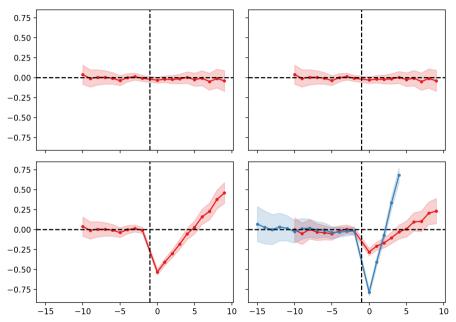
	(1) Standard	М	(2) Mundlak	Ñ
Static	$\mathbf{Y}_{it} = \alpha_i + \gamma_t + \tau \mathbf{W}_{it} + \varepsilon_{it}$	NT	$\begin{aligned} \mathbf{Y}_{it} &= \alpha + \tau \mathbf{W}_{it} + \psi \overline{\mathbf{W}}_{i,\cdot} \\ &+ \phi \overline{\mathbf{W}}_{\cdot,t} + \varepsilon_{it} \end{aligned}$	2+(C+1)
Dyn	$\begin{aligned} \mathbf{Y}_{it} &= \alpha_i + \gamma_t \\ &+ \sum_{k \neq -1} \tau_k \mathbf{Z}_{it}^k + \varepsilon_{it} \end{aligned}$	NT	$\begin{aligned} \mathbf{Y}_{it} &= \alpha + \psi \mathbf{D}_i + \sum_{k=1}^{T} \phi_t 1_{t=k} \\ &+ \sum_{k=1}^{T} \tau_k \mathbf{D}_i 1_{t=k} + \varepsilon_{it} \end{aligned}$	2Т
Dyn+Stagg	$\begin{aligned} \mathbf{Y}_{lt} &= \alpha_l + \gamma_t \\ &+ \sum_{c=1}^{C} \sum_{k \neq -1} \tau_{kc} 1_{G_l = c} \mathbf{Z}_{lt}^k \\ &+ \varepsilon_{lt} \end{aligned}$	NT	$\begin{aligned} \mathbf{Y}_{tt} &= \alpha + \sum_{k=1}^{C} \phi_c 1_{D_i = c} \\ &+ \sum_{k=1}^{T} \phi_t 1_{t=k} \\ &+ \sum_{c=1}^{C} \sum_{k=1}^{T} \tau_{kc} 1_{D_i = c} 1_{t=k} \\ &+ \varepsilon_{tt} \end{aligned}$	СТ

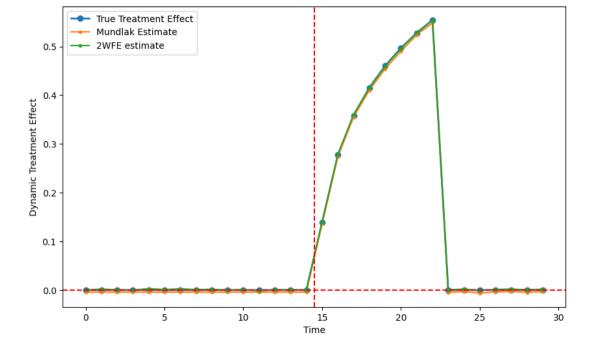
■ *N* units, *T* time periods

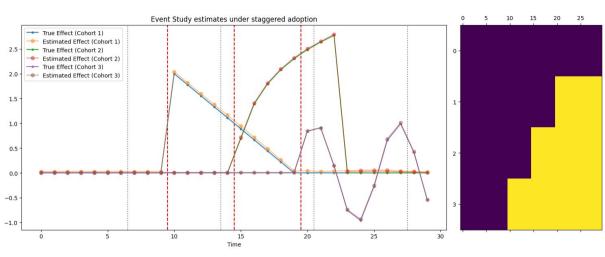
- **•** M, \widetilde{M} : number of required rows in design matrix
- C unique adoption cohorts (including control)
- 2 + (C+1) = 4 obs in standard A/B test
- Cluster-robust inference with cluster-bootstrap

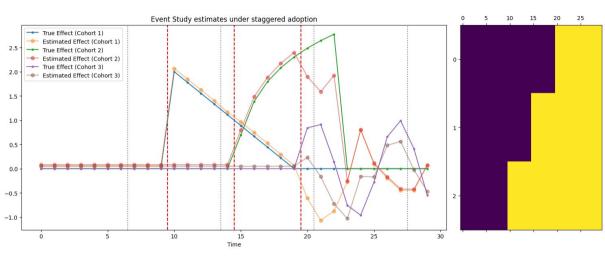




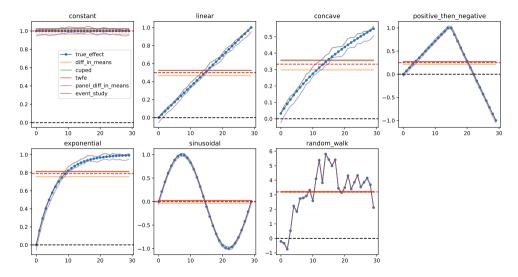


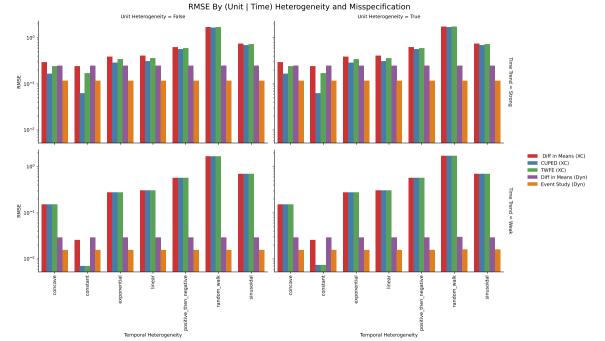






Numerical Experiments





Runtime Comparisons

N

Observations	Units	Periods	duckreg	pyfixest	pyfixest compressed	statsmodels
14K	1K	14	0.03	0.18	0.17	2.75
28K	1K	28	0.03	0.19	0.18	6.27
42K	1K	42	0.04	0.20	0.21	9.43
140K	10K	14	0.05	0.22	0.26	х
280K	10K	28	0.06	0.26	0.36	х
420K	10K	42	0.04	0.31	0.47	х
1M	100K	14	0.07	0.64	1.27	х
ЗM	100K	28	0.21	1.00	2.28	х
4M	100K	42	0.24	1.41	3.43	х
14M	1M	14	1.03	4.88	22.12	х
28M	1M	28	3.41	8.07	62.07	х
42M	1M	42	10.92	13.60	117.63	х
140M	10M	14	19.70	123.88	х	х
Mundlak			√	-	\checkmark	-
Compression			\checkmark	-	\checkmark	-
Out-of-Memor	у		\checkmark	-	-	-

 $1000 \times \{14, 28, 42, 140, 280, 420\}$ units, $\{14, 28, 42\}$ days.

 $\underbrace{\mathbf{Y}_{it}}_{\text{Stickiness}} \sim \underbrace{\alpha_i}_{\text{Member FE}} + \underbrace{\psi_{\mathbf{J}(i,t)}}_{\text{Title-FE}} + \underbrace{\mathbf{X}_{it}^{'}\beta}_{\text{Covariates}} + \varepsilon_{it}$

- Classic tool in Labour Economics (Abowd et al 1999)
- α_i member FE: unit *i*'s baseline completion metric
- **J**(i, t): *i* watched *j* at time *t*
- ψ_j title FE: title *j*'s completion metric
- Requires connected user-title graph plausible

- Classic tool in Labour Economics (Abowd et al 1999)
- α_i member FE: unit *i*'s baseline completion metric
- **J**(i, t): *i* watched *j* at time *t*
- ψ_j title FE: title *j*'s completion metric
- Requires connected user-title graph plausible
- Admits to variance decomposition

$$\mathbb{V}\left[Y_{it} - X'_{it}\beta\right] = \underbrace{\mathbb{V}\left[\alpha_i\right]}_{\text{Member effects}} + \underbrace{\mathbb{V}\left[\psi_{j(i,t)}\right]}_{\text{Title Effects}} + \underbrace{\mathbb{V}\left[\operatorname{Cov}\left[\alpha_i, \psi_{j(i,t)}\right]\right]}_{\text{Sorting}} + \mathbb{V}\left[\varepsilon_{it}\right]$$

Naive estimator has problems, fixes use Jackknife (Kline et al 2020).

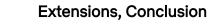
- Classic tool in Labour Economics (Abowd et al 1999)
- α_i member FE: unit *i*'s baseline completion metric
- **J**(i, t): *i* watched *j* at time *t*
- ψ_j title FE: title *j*'s completion metric
- Requires connected user-title graph plausible
- Admits to variance decomposition

$$\mathbb{V}\left[Y_{it} - X'_{it}\beta\right] = \underbrace{\mathbb{V}\left[\alpha_{i}\right]}_{\text{Member effects}} + \underbrace{\mathbb{V}\left[\psi_{j(i,t)}\right]}_{\text{Title Effects}} + \underbrace{\mathbb{V}\left[\operatorname{Cov}\left[\alpha_{i}, \psi_{j(i,t)}\right]\right]}_{\text{Sorting}} + \mathbb{V}\left[\varepsilon_{it}\right]$$

Naive estimator has problems, fixes use Jackknife (Kline et al 2020). Variance components suggest different catalogue / recommendation strategies.

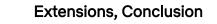
 Methods + Software for compressed, out-of-memory computation of commonly used least-squares panel data estimators

- duckreg : powered by duckDB out of memory
- pyfixest: general purpose in-memory regression package, compression in Polars



Methods + Software for compressed, out-of-memory computation of commonly used least-squares panel data estimators

- duckreg : powered by duckDB out of memory
- pyfixest: general purpose in-memory regression package, compression in Polars
- Applicable to both scalable estimation of event studies in experiments (focus of this talk), and difference-in-differences methods in observational settings
- Applies to any saturated regression, balanced-or-unbalanced panel data, or any high-dimensional categorical covariate



 Methods + Software for compressed, out-of-memory computation of commonly used least-squares panel data estimators

- duckreg : powered by duckDB out of memory
- pyfixest: general purpose in-memory regression package, compression in Polars
- Applicable to both scalable estimation of event studies in experiments (focus of this talk), and difference-in-differences methods in observational settings
- Applies to any saturated regression, balanced-or-unbalanced panel data, or any high-dimensional categorical covariate
- Extensions / Links
 - Extension to GLMs: Lumley (2018) estimate MLE on subsample, perform one-step Fisher-scoring update
 - Sketching methods randomized linear algebra tricks to approx X'X 'well': Mahoney (2013), Pilanci et al (2018), Dobriban et al (2023)
- Other ideas?